`R/n_EA_E_and_n_EB_E2p_AB_E.R`

`n_EA_E_and_n_EB_E2p_AB_E.Rd`

Given the n-vectors for positions A (`n_EA_E`

) and B (`n_EB_E`

), the
output is the delta vector from A to B (`p_AB_E`

).

n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA = 0, z_EB = 0, a = 6378137, f = 1/298.257223563)

n_EA_E | n-vector of position A, decomposed in E (3x1 vector) (no unit) |
---|---|

n_EB_E | n-vector of position B, decomposed in E (3x1 vector) (no unit) |

z_EA | Depth of system A, relative to the ellipsoid (z_EA = -height) (m, default 0) |

z_EB | Depth of system B, relative to the ellipsoid (z_EB = -height) (m, default 0) |

a | Semi-major axis of the Earth ellipsoid (m, default [WGS-84] 6378137) |

f | Flattening of the Earth ellipsoid (no unit, default [WGS-84] 1/298.257223563) |

Position vector from A to B, decomposed in E (3x1 vector)

The calculation is exact, taking the ellipticity of the Earth into account.
It is also nonsingular as both n-vector and p-vector are nonsingular
(except for the center of the Earth).
The default ellipsoid model used is WGS-84, but other ellipsoids (or spheres) might be specified
via the optional parameters `a`

and `f`

.

Kenneth Gade A Nonsingular Horizontal Position Representation.
*The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

lat_EA <- rad(1); lon_EA <- rad(2); z_EA <- 3 lat_EB <- rad(4); lon_EB <- rad(5); z_EB <- 6 n_EA_E <- lat_lon2n_E(lat_EA, lon_EA) n_EB_E <- lat_lon2n_E(lat_EB, lon_EB) n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA, z_EB)#> [1] -34798.44 331985.66 331375.96