Calculate the rotation matrix (direction cosine matrix) R_EL using n-vector (n_E) and the wander azimuth angle. When wander_azimuth = 0, we have that N = L (See Table 2 in Gade (2010) for details)

## Usage

n_E_and_wa2R_EL(n_E, wander_azimuth)

## Arguments

n_E

n-vector decomposed in E (3x1 vector) (no unit)

wander_azimuth

The angle between L's x-axis and north, positive about L's z-axis (rad)

## Value

The resulting rotation matrix (3x3) (no unit)

## References

Kenneth Gade A Nonsingular Horizontal Position Representation. The Journal of Navigation, Volume 63, Issue 03, pp 395-417, July 2010.

R_EL2n_E, R_EN2n_E and n_E2R_EN.

## Examples

# Calculates the rotation matrix (direction cosine matrix) R_EL
# using n-vector (n_E) and the wander azimuth angle.
n_E <- c(1, 0, 0)
(R_EL <-  n_E_and_wa2R_EL(n_E, wander_azimuth = pi / 2))
#>              [,1]          [,2] [,3]
#> [1,] 0.000000e+00  0.000000e+00   -1
#> [2,] 1.000000e+00  6.123234e-17    0
#> [3,] 6.123234e-17 -1.000000e+00    0